2,764 research outputs found

    Computability of entropy and information in classical Hamiltonian systems

    Full text link
    We consider the computability of entropy and information in classical Hamiltonian systems. We define the information part and total information capacity part of entropy in classical Hamiltonian systems using relative information under a computable discrete partition. Using a recursively enumerable nonrecursive set it is shown that even though the initial probability distribution, entropy, Hamiltonian and its partial derivatives are computable under a computable partition, the time evolution of its information capacity under the original partition can grow faster than any recursive function. This implies that even though the probability measure and information are conserved in classical Hamiltonian time evolution we might not actually compute the information with respect to the original computable partition

    On the functions generated by the general purpose analog computer

    Get PDF
    PreprintWe consider the General Purpose Analog Computer (GPAC), introduced by Claude Shannon in 1941 as a mathematical model of Differential Analysers, that is to say as a model of continuous-time analog (mechanical, and later one electronic) machines of that time. The GPAC generates as output univariate functions (i.e. functions f:R→R). In this paper we extend this model by: (i) allowing multivariate functions (i.e. functions f:Rn→Rm); (ii) introducing a notion of amount of resources (space) needed to generate a function, which allows the stratification of GPAC generable functions into proper subclasses. We also prove that a wide class of (continuous and discontinuous) functions can be uniformly approximated over their full domain. We prove a few stability properties of this model, mostly stability by arithmetic operations, composition and ODE solving, taking into account the amount of resources needed to perform each operation. We establish that generable functions are always analytic but that they can nonetheless (uniformly) approximate a wide range of nonanalytic functions. Our model and results extend some of the results from [19] to the multidimensional case, allow one to define classes of functions generated by GPACs which take into account bounded resources, and also strengthen the approximation result from [19] over a compact domain to a uniform approximation result over unbounded domains.info:eu-repo/semantics/acceptedVersio

    Genome wide association studies in presence of misclassified binary responses

    Get PDF
    BACKGROUND: Misclassification has been shown to have a high prevalence in binary responses in both livestock and human populations. Leaving these errors uncorrected before analyses will have a negative impact on the overall goal of genome-wide association studies (GWAS) including reducing predictive power. A liability threshold model that contemplates misclassification was developed to assess the effects of mis-diagnostic errors on GWAS. Four simulated scenarios of case–control datasets were generated. Each dataset consisted of 2000 individuals and was analyzed with varying odds ratios of the influential SNPs and misclassification rates of 5% and 10%. RESULTS: Analyses of binary responses subject to misclassification resulted in underestimation of influential SNPs and failed to estimate the true magnitude and direction of the effects. Once the misclassification algorithm was applied there was a 12% to 29% increase in accuracy, and a substantial reduction in bias. The proposed method was able to capture the majority of the most significant SNPs that were not identified in the analysis of the misclassified data. In fact, in one of the simulation scenarios, 33% of the influential SNPs were not identified using the misclassified data, compared with the analysis using the data without misclassification. However, using the proposed method, only 13% were not identified. Furthermore, the proposed method was able to identify with high probability a large portion of the truly misclassified observations. CONCLUSIONS: The proposed model provides a statistical tool to correct or at least attenuate the negative effects of misclassified binary responses in GWAS. Across different levels of misclassification probability as well as odds ratios of significant SNPs, the model proved to be robust. In fact, SNP effects, and misclassification probability were accurately estimated and the truly misclassified observations were identified with high probabilities compared to non-misclassified responses. This study was limited to situations where the misclassification probability was assumed to be the same in cases and controls which is not always the case based on real human disease data. Thus, it is of interest to evaluate the performance of the proposed model in that situation which is the current focus of our research

    Marginal and density atomic Wehrl entropies for the Jaynes-Cummings model

    Full text link
    In this paper, we develop the notion of the marginal and density atomic Wehrl entropies for two-level atom interacting with the single mode field, i.e. Jaynes-Cummings model. For this system we show that there are relationships between these quantities and both of the information entropies and the von Neumann entropy.Comment: 13 pages, 3 figures, this is the final versio

    Computational bounds on polynomial differential equations

    Get PDF
    In this paper we study from a computational perspective some prop-erties of the solutions of polynomial ordinary di erential equations. We consider elementary (in the sense of Analysis) discrete-time dynam-ical systems satisfying certain criteria of robustness. We show that those systems can be simulated with elementary and robust continuous-time dynamical systems which can be expanded into fully polynomial ordinary diferential equations with coe cients in Q[ ]. This sets a computational lower bound on polynomial ODEs since the former class is large enough to include the dynamics of arbitrary Turing machines. We also apply the previous methods to show that the problem of de-termining whether the maximal interval of defnition of an initial-value problem defned with polynomial ODEs is bounded or not is in general undecidable, even if the parameters of the system are computable and comparable and if the degree of the corresponding polynomial is at most 56. Combined with earlier results on the computability of solutions of poly-nomial ODEs, one can conclude that there is from a computational point of view a close connection between these systems and Turing machines

    Analog computers and recursive functions over the reals

    Get PDF
    This paper revisits one of the rst models of analog computation, the General Purpose Analog Computer (GPAC). In particular, we restrict our attention to the improved model presented in [11] and we show that it can be further re ned. With this we prove the following: (i) the previous model can be simpli ed; (ii) it admits extensions having close connec- tions with the class of smooth continuous time dynamical systems. As a consequence, we conclude that some of these extensions achieve Turing universality. Finally, it is shown that if we introduce a new notion of computability for the GPAC, based on ideas from computable analysis, then one can compute transcendentally transcendental functions such as the Gamma function or Riemann's Zeta function

    Polynomial differential equations compute all real computable functions on computable compact intervals

    Get PDF
    In the last decade, the eld of analog computation has experienced renewed interest. In particular, there have been several attempts to un- derstand which relations exist between the many models of analog com- putation. Unfortunately, most models are not equivalent. It is known that Euler's Gamma function is computable according to computable analysis, while it cannot be generated by Shannon's General Purpose Analog Computer (GPAC). This example has often been used to argue that the GPAC is less powerful than digital computation. However, as we will demonstrate, when computability with GPACs is not restricted to real-time generation of functions, we obtain two equiva- lent models of analog computation. Using this approach, it has been shown recently that the Gamma func- tion becomes computable by a GPAC [1]. Here we extend this result by showing that, in an appropriate framework, the GPAC and computable analysis are actually equivalent from the computability point of view, at least in compact intervals. Since GPACs are equivalent to systems of polynomial di erential equations then we show that all real computable functions over compact intervals can be de ned by such models
    corecore